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ABSTRACT

Machine learning algorithms have become the key compo-
nents in many big data applications. However, the full po-
tential of machine learning is still far from been realized be-
cause using machine learning algorithms is hard, especially
on distributed platforms such as Hadoop and Spark [8]. The
key barriers come from not only the implementation of the
algorithms themselves, but also the processing for apply-
ing them to real applications which often involve multiple
steps and different algorithms. In this demo we present a
general-purpose dataflow-based system for easing the pro-
cess of applying machine learning algorithms to real world
tasks. In the system, a learning task is formulated as a di-
rected acyclic graph (DAG) in which each node represents
an operation (e.g., a machine learning algorithm), and each
edge represents the flow of the data from one node to its de-
scendants. Graphical user interface is implemented for mak-
ing users to create, configure, submit, and monitor a task in
a drag-and-drop manner. Advantages of the system include
1) lowering the barriers of defining and executing machine
learning tasks; 2) sharing and re-using the implementations
of the algorithms, the task dataflow DAGs, and the (inter-
mediate) experimental results; 3) seamlessly integrating the
stand-alone algorithms as well as the distributed algorithms
in one task. The system has been deployed as a machine
learning service and can be access from the Internet.
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1. INTRODUCTION

Machine learning has become the core of many big data
applications such as information retrieval, question answer-
ing, and recommender system etc. To fulfill the increas-
ing requirements on machine learning algorithms, a num-
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ber of scalable machine learning libraries, including Apache
Mahout [3] and Spark MLIib [4], have been developed and
widely used. Despite the widespread impacts of the ma-
chine learning libraries, it is still difficult for ordinary users
to use the machine learning in their applications. The bar-
rier mainly comes from the complex process of using machine
learning algorithms to solve a real-world task. A machine
learning task usually consists of multiple steps including
data preparation, feature extraction, model training, test-
ing, and performance evaluation etc. The process could be-
come more complicated if multiple learning algorithms and
datasets are involved. For example, the user may want to
use the topics as features in the task of document catego-
rization. Thus, the process need to first train a topic model
based on some dataset, and then feed the learned topics to a
classification model. It has been widely recognized that con-
structing an appropriate process is crucial for the success of
applying machine learning to real world application. There-
fore, a platform that can help to ease the machine learning
process will be of great help to users.

In this demo, we present a general-purpose machine learn-
ing system for lowering the barrier to applying machine
learning algorithms. In the system, we consider the pro-
cess of applying machine learning algorithms from the view-
point of dataflow. Thus, the process can be formulated as
a directed acyclic graph (DAG) in which the source data
flow into the root nodes. Each node makes operations on
the data, generates new data, and sends the generated data
to its descendant nodes for conducting further operations.
Finally, the results flow out from the leaf nodes.

The system consists of three major components: 1) A
distributed machine learning library which implements pop-
ular machine learning algorithms as well as the algorithms
for data pre/post-processing, format transformation, feature
generation, performance evaluation etc. 2) A GUI-based
machine learning studio which enable users to create, con-
figure, submit, monitor, and share their machine learning
process in a drag-and-drop manner. The algorithms in the
machine learning library can be accessed in the studio. 3)
A cloud service for executing the tasks. We build the ser-
vice based on the open source big data platform of Hadoop
and Spark. After receiving a task DAG from the GUI, each
node will be automatically scheduled to run when all of its
dependent data sources are ready.

The system offers several distinct advantages for applying
machine learning to real tasks: 1) The dataflow formula-
tion of machine learning tasks is quite intuitive and easy
to understand. The GUI hides the unnecessary technical



details of the algorithms (e.g., the complex command line)
and helps user to focus on building the task process; 2) Users
can upload and share their own data, algorithms, and tasks
to other users; 3) It has the ability to use the stand-alone,
Spark, and Map-Reduce algorithms in one DAG.

Several similar systems have been developed and released
in enterprise and open source community. Mahout [3] and
MLIib [4] are two distributed machine learning libraries de-
veloped with Hadoop Map-Reduce and Spark, respectively.
A number of popular machine learning algorithms have been
implemented in the libraries. To make these algorithms
working together, people considers the application of ma-
chine learning as a workflow and several workflow schedulers
have been developed, including the open source systems of
Oorzie [7], HUE [1], and Azkaban [2] etc. However, compare
with the dataflow, the workflow cannot specify data depen-
dencies between nodes, which increases the complexity of
configuration. Microsoft has released Azure machine learn-
ing [5] in which a machine learning process is formalized as
a dataflow.

2. MACHINE LEARNING PROCESS AS A
DATAFLOW DAG

A typical application of the machine learning algorithms
consists of several steps include gathering and preprocessing
the data, extracting features, applying the training algo-
rithm, and testing the performances of the trained model.
From the viewpoint of data, the whole process can be viewed
as the raw data flow into the processing pipeline. After a
number of step-by-step operations on the data, the result
data flow out the pipeline. The process could be more com-
plex if multiple machine learning algorithms are involved.

Our system formulates the complex process of applying
machine learning algorithms as a DAG of dataflow in which
the data flow in the graph according to the directed edges.
The data will be processed by the nodes it flows through.
Each node consists of several input ports, output ports, and
an operation. Each input port corresponds to an flow in data
file and each output port corresponds to a data file that
flows out. The operation is a (stand-alone or distributed)
program that reads the input ports and writes the results
to output ports. In our system, the operation of each node
is implemented as a command line. A dataflow DAG may
also contain some data nodes which represent the input data
sources. Please note that a data node only have one output
port. Figure 1 shows a typical dataflow DAG of applying
logistic regression for identifying the SMS spam. Different
colors are used to show the different status of the nodes:
green for success, yellow for under executing, gray for wait-
ing, and red for failed.

3. SYSTEM OVERVIEW

Figure 2 shows the architecture of the our system. The
whole system consists of three parts: big data infrastruc-
ture for providing the foundation services, machine learning
library for providing the core building blocks of the ma-
chine learning tasks, and machine learning studio for provid-
ing user-friendly GUI to lower the barrier of using machine
learning.

e Big data infrastructure

Our system is built upon the open source big data system

of Hadoop and Spark. All the data, machine learning algo-
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Figure 1: An example dataflow DAG.
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Figure 2: An overview of system architecture.

rithms, and other dependent information are stored in the
distributed file system HDFS and data management system
of Hive. A relational database system of MySQL is used for
storing the metadata. Our system also depend on the dis-
tributed computational framework of Map-Reduce [6] and
Spark [8]. All of the computational resources are managed
with Yarn. Each of the submitted machine learning task (a
dataflow DAG) is first converted to a workflow DAG and
scheduled with the workflow scheduler system Oozie.
e Machine learning library

The machine learning library implements a number of
popular machine learning algorithms (e.g., classification, topic
modeling, graph processing, and information recommenda-
tion etc). For each algorithm, we implemented the dis-
tributed version on Spark as well as the standalone ver-
sion because the standalone versions are usually more ef-
ficient than the distributed versions if the datasets are not
big enough. Besides the core algorithms, the library also
implements necessary modules for supporting the core al-
gorithms including data pre/post-processing, data format
transformation, feature extraction, and performance evalu-
ation etc. All of the algorithms and modules can be called
via both the command line and Java API. These algorithms
constitute the core building blocks for users to define their
machine learning tasks.
e Machine learning studio

The main goal of the machine learning studio is to provide
a user-friendly GUI so that ordinary users can use the ma-
chine learning algorithms to solve their own problems easily.
The machine learning studio is implemented as a web ser-
vice and can be accessed via web browsers. It provides the
follow main features:

(1) Resource management: All algorithms implemented
in the machine learning library can be accessed from the



studio system. The system also provide a a number of data
and tasks for showing how to use the algorithms to solve a
problem. To construct a machine learning task, users may
directly use the algorithms and data in the system. They
can also upload their own data and algorithm packages. To
upload an algorithm package, the user need to specify the
format of the command line pattern string for running the
algorithm. The string defines the program name, the input
ports, the output ports, and the parameters settings. In
this way, an uploaded algorithm can be run with different
parameter settings. In a specified task dataflow DAG, the al-
gorithm can be scheduled to run according to the command
line pattern. After a machine learning task is submitted, it
will be assigned a unique ID and stored in the task reposi-
tory. Users can check and reuse the task in the future. They
can also share the task to other users.

(2) Task design: To construct a machine learning task,
a user may drag the algorithms and data sets (nodes) to the
work panel, connect these nodes as a dataflow DAG, and
set the parameters of all the nodes. If the users can find
a similar task in our repository (in most cases), they can
directly clone an existing task and make necessary modifi-
cations (add/remove nodes and edges, change parameters).
By selecting a node in the work panel, the parameter set-
ting panel will be shown in the right part of the page, which
enables the users to set the specific parameter values for the
corresponding algorithm in the task. After submitting a ma-
chine learning task, the studio will check the correctness of
the dataflow DAG, generate the file paths of the temporal
files, convert dataflow DAG to a work-flow DAG, and finally
submit the work-flow DAG to Oozie for execution.

(3) Task monitoring: Users can monitor the progresses
of a submitted task through the studio. During the execu-
tion of a task, different colors are used to indicate the status
of the nodes: green for completed successfully, yellow for
under running, red for completed with errors, and gray for
waiting to execute. The results of a success node can be
checked and downloaded via right clicking the correspond-
ing output ports. The information printed to the standard
out and standard error consoles can also be checked by right
clicking the corresponding nodes. Through this way, users
can know the status of a task and debug their algorithms
and tasks if any error occurs.

(4) Task Reusing: An existing task can not only be used
as templates for designing new tasks but also be reused for
saving the execution time and system resource. Users may
directly modify a completed task (e.g., modify the parame-
ters of the nodes, add nodes and edges, or delete nodes and
edges etc.) and resubmit the task. In the newly submit-
ted task, only the influenced nodes are scheduled to execute
and the results outputted by the uninfluenced nodes will be
reused directly. For solving a real task, users usually need
to tune their task dataflow DAG and parameters of the al-
gorithms over and over. Task re-usage provides an effective
mechanism to save the user’s waiting time and resources.

4. ADVANTAGES

Our system offers the following advantages.

1) It is an easy-to-use and quite powerful system. The
dataflow DAG formulation of the machine learning task is
intuitive and easy to understand for ordinary users. Many
unnecessary details are hidden. On the other hand, it still

provides a lot of details (e.g., the parameters settings, the
input/output ports etc.) for expert users.

2) The system seamlessly integrates the heterogeneous
programs in one task. Since we used the HDF'S for exchang-
ing the information across different nodes, we have very few
restriction on the form of the programs for the DAG nodes.
The program corresponds to a node could be executed in
stand-alone or distributed manner. It could be written with
the programming language of C++4, Java, Python, Perl or
even the shell language.

3) The data, algorithms, and tasks in the system are
highly reusable. Users can make use of the data and algo-
rithms developed our library for constructing different ma-
chine learning tasks. The can also make use of the data and
algorithms uploaded/shared by other users. A task can be
cloned to construct similar tasks. Moreover, the intermedi-
ate results of an existing task can be reused by modifying
and appending the task directly.

S. DEMO PLAN

We will present our system in the following aspects: (1)
We will use a poster to give an overview of system architec-
ture and briefly show the dataflow DAG formulation of the
machine learning tasks and the system components. (2) We
will show the audience how to use the system to complete
a example machine learning task, including creating, config-
uring, submitting, and monitoring a task. (3) We will show
the algorithms and datasets in the system. We will also
show advanced functions of the system such as uploading
new algorithms and datasets, sharing and reusing existing
tasks etc. The audience will gain a deeper understanding on
the system. (4) We will share our thoughts on the strengths
and weakness of the system, and further discuss future work.
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APPENDIX

Our system can be accessed via http://159.226.40.104:18080/studio/
with a test account “bdaict@hotmail.com” and password “bdaict”.

For the best user experience, it is recommended to use Chrome.

As shown in the following figure, the users can create a ma-
chine learning task (a dataflow DAG) with the algorithms and
data sets listed in the left panel of the page. They can choose
to click the algorithms and data sets listed in the “Program” and
“Data” panels. They can also click the “Job” panel, select an ex-
isting task, clone it, and make necessary modifications. The users
can configure the task information and parameter values of each
node in the right panel. The nodes in the task could corresponds
to either a stand-alone Linux program or a distributed program
running on Spark or Hadoop Map-Reduce.
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The task is submitted to run on the cloud after clicking the
“submit” button. The status of each node is indicated with dif-
ferent colors, as shown in the following figure.
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The users may check the outputs of a node by right clicking the
corresponding output ports. The standard output and standard
error information printed during the execution can be checked
through right clicking the corresponding nodes and selects the
menu “Show STDOUT” and “Show STDERR”.
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A finished (either success or not) task can be further modified
and resubmitted to run, as shown in the following figure. Our
system will only schedule the influenced nodes to run. The out-
puts of uninfluenced nodes are directly reused to save the running
time and system resources.
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The users can upload their own algorithm packages and data
sets for creating their own tasks or shared with other users. By
clicking the “upload program” button, the popup window allows
the users to specify the necessary information of the algorithm
package, including the name, the category, the description, and
the command line pattern string etc, as shown in the following
figure. The most important thing is to write the command line
pattern string with the predefined format. It defined the input
ports, output ports, and parameter settings of a node. We devel-
oped a tool in the panel for helping users to write the command
line string patterns. By clicking the “upload data” button, users
can upload a data set in the similar way as that of uploading a
algorithms package.

X
Name  [LogisticRegression_ Train CMDFomat [y ava <p local Ja b ocal rable ogisticRegression Train Add
Category [y Program v Type  Value Parameter  Default description  |_Del
. in v [LabeledPoint | train_pt ran cata
o Standaions v
o> out_v ] LRModel modsl_pt modsl utput
Programable (o v sir v sting optimizer sgd sodorgd
9 o od or g
Determinacy (30 = raal max_iter 2 max eraion
doul v double g oo1 reqularzer
Version o1 doul ¥ double leam_rate 01 fearming rate
Create 016052870225 Generate
Time java cp local ar bda localrunnable ogisticRegression Train —
trin_pt (nLabeledPoint “train dta") -model_pt
Ouner - fortanyou@qg.com {out LRModet“model outpu) —optmizer (sgd or
Description i I e raiing program ofogstc osting defaul.“sg"] -max_te 'max lteration’ nt dfault 20] —
Fegpeseion req [reguiarizer”double:efault,0.01] —eam_rate [leaming
rate” double defaut0.1]
] 1 zip == | submi H

All the algorithms in the machine learning library can also be
called via Java API. The details can be found via http://159.226.
40.104:18080/api/#package and the following figure shows the
snippet.

(@
#ABCDEFGHIJKLMNOPGRS TUVW

display packages only
B Common

package common

sh
bda.common.collection

bdacommon.data  show focus
bda.commonlinalg show focus

(@ o
PR visbiy Pusic Al
bdacommon inalgmmutable:

ow focus.
bda.common inalg mutable

bda.common.obj  show focus’
bda.commonstat  show focus'
bda.common.util  show focus’

show  focus
bda.example.NewsGroup

bda.example.ata
bdaexample.cadata packege data

bdaexample.dna Some commonly used small datasets
bda.example.graph

Type Members

trait Logging extends AnyRef
Utility trait for Logging Usage:

class statfest estends FusSuite

Value Members

packege collection

packege linalg

bdaexample.mowelens, packaze obj
Beiocalievaluate  Show focus

hide focus
lbdalocalmodeLiCModel
© G IChodel Utiities for statistics

packege util

‘This packapge contains commonly used objects in machining learning

packege stat




